acquisition, monitoring and processing DATALO G 20, 90 and 140

The DATALO G series is intended to measure, handle, process, monitor and record a nalogue and digital signals from all common types of physical sensors. The systems can be supplied in various configurations with a choice of input and output boards as well as options such as built-in display and printer.

W hatever system chosen, and thanks to the mea surement metrological quality, the programming power offered by the internal functions, the DATALO G systems are well adapted to numerous applications, such as:

- Stand-alone data acquisition system without PC.

Universal Inputs/O utputs

1 to 2000 Inputs/Outputs
600,000 count converter
Computations and statistics
PCMCIA slot
MODBUS/RTU networking
PC software

- Sensor calibration system.
- Testing bench.
- Conditioning chamber and autoclave validation.
- PC input/ output interface.
- Acquisition module for programmable controller or standard supervisor.

functions

Embedded softw are

\qquad
The DATALO G series provides the user with a large amount of programming power.
This can be used or not depending upon the work to be carried out.

Channels

\qquad
Each module can address 2000 channels. These can be real channels (input or output) or virtual channels performing computations.

Monitoring

programm
A specific relay output or if required a
A specific relay output or, if required, a conditional processing may be associated to each threshold.

Mathematical operations

Any mathematical, Boolean and statistical
computations may be defined on or betw een channels. 100 linearization table with 40 couples of counts each may be accessed by the user (measured value associated with computed value), thus allowing corrections of sensors.

Conditional processing

IF, THEN, DO are accessible and authorise changes to constants, thresholds, tasks, i.e. condition scanning.

Channel scanning

The system is organised by "tasks" up to 100) which define the input/ outputs scan ning and result output to peripherals.

Storage and PCM CIA

The DATA LO G are equipped (as standard) with 6 storage memories of 8000 measurements (1 per task over the first six
tasks). All the DATALO G with the optional keypad are equipped with a PCMCIA slot authorising loading of various configurations and large capacity storage.

Configuration and processing

All the DATALO G can be conig PC software which enables the operator to collect the data stored for PC processing (curves, delayed computations, export to spreadsheets).

Softw are

In addition to the configuration and processing software, a real time supervisory software is available for networking. Various utilites (automatic collecting of data via modem) a DLL library and a LABVIEW driver complete the range.
configuration.

Each channel occupies 1 I/ 0 slot except the high speed acquisition board which occupies 2 I/ 0 slots.
(1)Full, half. or quarter- bridge gauges. Need a power supply board which occupies 1 I/ 0 slot.
(2) RS 485 or RS 232 C network interface. MODBUS/ RTU (binary) protocol. Up to 32 modules can be linked. $D \leq 1200 \mathrm{~m}$.
(3) RS 232 C interface ASCll or MODBUS/ RTU programmable.

		D20	D90	D140	Specifications - Comments
MECHANICAL SPECIFICATIONS	Size	149×160	149×291	149×393	Front panel dimensions in mm Depth:410 mm, 470 mm with protection cover
	I/ 0 board slots	2	9	14	Universal analogue inputs, digital inputs Electrotechnical board High speed acquisition board Strain gauge power supply Relay outputs, analogue outputs
INTERNAL FUNCTIONS	Computation function	\checkmark	\checkmark	\checkmark	$t_{1} ; /, X, X, O R, A N D, N O T, \leq,=, \geq,\langle \rangle$, square root, log, NL, absolute value, statistics: maximum, minimum, average, standard deviation, trigonometric function, time base in seconds
	Monitoring	\checkmark	\checkmark	\checkmark	4 programmable thresholds per channel
	Bulk storage	\checkmark	\checkmark	\checkmark	In standard system version, storage of 6 blocks of 8000 measurements PCMCIA slot with keypad versions
	RS 232C interface	\checkmark	\checkmark	\checkmark	ASCII/ MODBUS RTU programmable interface
	Netw ork interface	\checkmark	\checkmark	\checkmark	MODBUS RTU (binary) protocol RS 485 support
	Alarm relays	\checkmark	\checkmark	\checkmark	Dry relay contact alarms on first threshold
	Program backup	\checkmark	\checkmark	\checkmark	Backup battery Life: approx. 1 month
	Keypad display	Optional	Optional	Optional	Liquid Crystal Display, 2×20 characters
	Intemal printer	No	Optional	Optional	Thermal printer
	12 VDC supply	\checkmark	\checkmark	\checkmark	Consumption: 10 W approx. according to configuration
	Rechargeable battery	No	Optional	Optional	Stand-alone operation. Typical life: 4 hours
I/ 0 BOARDS Connection by removable screw connector	Analogue input boards	Optional	Optional	Optional	10 or 20 configurable inputs Scanning speed up to 100 meas/ s : - DC voltage from $1 \mu \mathrm{~V}$ to 100 V (600000 counts) - AC voltage from $10 \mu \mathrm{~V}$ to 100 V (600000 counts) - Resistance from $1 \mathrm{~m} \Omega$ to $300 \mathrm{k} \Omega$ -Pt $25,50,100$ and 1000Ω, Ni 100 , resolution $1 / 10^{\circ} \mathrm{C}$ or $1 / 100^{\circ} \mathrm{C}$ - K, T, J, S, B, N, C, R, E, Mo, L, U, Pl thermocouples - Process $4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, 1.5 \mathrm{~V}, 0.10 \mathrm{~V}$ - Contacts - Full, half-, quarter- bridge strain gauges
	Digital input board	Optional	Optional	Optional	10 counter and frequency measurement inputs
	Electrotechnical input board	Optional	Optional	Optional	3 UAC inputs and 3 IAC inputs (with VT and CT) U, I, P, Q, R, F power and energy computation
	High speed input board	Optional	Optional	Optional	10 channels: $\pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}$ from 1 Hz to 50 kHz (occupies 2 slots)
	Relay output board	Option	Option	Optional	10 outputs to dry contacts
	Analogue output board	Optional	Optional	Optional	$5-12$ bits programmable outputs $\pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$
PC SOFTWARE	Programming	\checkmark	\checkmark	\checkmark	Windows software
	Supervisory control	Optional	Optional	Optional	Windows software

analogue input boards AN 5885 - AN 5900 - AN 5905 - ATC 017

These boards are for universal inputs. Each channel is configurable depending on the quantity to be measured. The connection is performed over a removable screw connector for 0.5 to $2.5 \mathrm{~mm}^{2}$ wires.

AN 5885

10 input channels authorising the follow-"
ing measurements:
DC voltages and currents.
$A C$ voltages and currents.
Resistance using 3-or 4-wire configura-
tion.
Platinum and N ickel RTDs.
Thermocouples
Dry contacts
Strain gauges (N eed the AN 3700 board).

AN 5900 .
10 input channels authorising the same measurements as the AN 5885 board with the exception of strain gauges.

ATC 017
This board is to be used for energy source measurements. Resistors mounted in series on the inputs ensure the protection against accidental switching short-circuits. It has
10 input channels for measuring as follows:
DC voltages and currents,
AC voltages and currents.

AN 5905

20 input ch
input channels intended for measuring as follows:
DC voltages and currents,
$A C$ voltages and currents,
Thermocouples,
Dry contact.

Switching

It is performed over the AN 5885,
AN 5900 and ATC 017 boards by using 3 -wire dry contact relay.
Differential resistance $\leq 40 \mathrm{~m} \Omega$.
Stray emf: $\pm 2.5 \mathrm{mV}$.
Life $\geq 10^{8}$ operations.
For the AN 5905, the switching is static and performed by means of optomos and the voltage between channels is limited to 60 VDC or AC.
For the other boards, the voltage between channels is limited to 150 VDC or AC.

Scanning speeds

Three integration times are programmable channel per channel. This criterion acts on the conversion and setting time, the lowest speed gives the maximum resolution and accuracy.

Scanning speed	Integration time	Display capacity	Measurement counts	Representation unit (1)
7 meas/ s	100 ms	690000 cts	690000 cts	1 RU
20 meas/s	20 ms	69000 cts	69000 cts	1 RU
$50 \mathrm{meas} / \mathrm{s}$	1 ms	6900 cts	6900 cts	1 RU
100 meas/s	(2)	6144 cts	2048 cts	3 RU

(1) RU $=$ Representation Unit which cor responds to the minimum deviation between two displayed values. E.g.: for a decimal display changing 3 counts per 3 counts, $\mathrm{RU}=3$.
(2) Analogue-to-digital converter, 12 bits with successive approximations. This speed is not available for strain gauges.

For lower speeds, converter ± 690000 counts.

DC voltage

Range	Resolution			Uncertainty at 7 meas/ s over 90 days (1)		Uncertainty at 7 meas/ s over 1 year (1)	
	7 meas/s	20 meas/s	100 meas/s	AN 5885	AN 5900 and 5905	AN 5885	AN 5900 and 5905
60 mV	$1 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$	$30 \mu \mathrm{~V}$	$0.008 \%+3 \mu \mathrm{~V}$	$0.03 \%+5 \mu \mathrm{~V}$	0.01\% + $7 \mu \mathrm{~V}$	0.06\% + $7 \mu \mathrm{~V}$
600 mV	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$300 \mu \mathrm{~V}$	$0.008 \%+3 \mu \mathrm{~V}$	$0.03 \%+5 \mu \mathrm{~V}$	$0.01 \%+7 \mu \mathrm{~V}$	0.06\% + $7 \mu \mathrm{~V}$
6 V	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	3 mV	$0.008 \%+20 \mu \mathrm{~V}$	$0.03 \%+20 \mu \mathrm{~V}$	$0.01 \%+40 \mu \mathrm{~V}$	0.06\% + $40 \mu \mathrm{~V}$
	$100 \mu \mathrm{~V}$	1 mV	30 mV	$0.008 \%+200 \mu \mathrm{~V}$	$0.03 \%+200 \mu \mathrm{~V}$	$0.01 \%+400 \mu \mathrm{~V}$	$0.06 \%+400 \mu \mathrm{~V}$
100 V	1 mV	10 mV	300 mV	$0.008 \%+2 \mathrm{mV}$	$0.03 \%+2 \mathrm{mV}$	0.01\% + 4 mV	0.06\% + 4 mV

(1) Expressed in $\pm(\% \mathrm{rdg}+\mathrm{C})$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with rdg $=$ reading and $\mathrm{C}=$ Constant.

The 20 channel board AN 5905 has the same uncertainties as the AN 5900 board and the maximum range is limited to 60 V .
At 20 meas/ s , the uncertainty is slightly reduced with regard to 7 meas/ s . At 50 meas/ s , the uncertainty over one year is ranging 4 RU (measurement resolution).
At 100 meas/ s , the uncertainty over one
year is ranging 12 RU (measurement resolution).
The "process current" ranges need an external $50 \Omega \cdot 0.1 \%$ shunt.
Rejection level at $50 \mathrm{~Hz} \pm 1 \%$ over 60 mV range at 7 and $20 \mathrm{meas} / \mathrm{s}$:

- Normal mode $>60 \mathrm{~dB}$
- Common mode > 140 dB .

Input impedance:
$>100 \mathrm{M} \Omega$ over ranges $\leq 6 \mathrm{~V}$
$10 \mathrm{M} \Omega$ for upper ranges.
Temperature coefficient:

- From 0 to $35^{\circ} \mathrm{C}$:
$(0.0001 \%+0.5 \mathrm{RU}) /{ }^{\circ} \mathrm{C}$.
- From 35 to $50^{\circ} \mathrm{C}:(0.001 \%+1 \mathrm{RU})^{\circ} \mathrm{C}$.

Repeatability between two channels:
\leq Constant C.

AC voltage

TRMS value measurement $(A C+D C$ mode). The accuracies (uncertainties) are given for a sine wave voltage without $D C$ component.

M easurement minimum scanning time:
2 seconds.
M easurement range: 4 to 110% of range from 40 to 400 Hz .
Crest factor influence (CF): 1% for $\mathrm{CF}=3$. Repeatability betw een two channels: $\leq \mathrm{C}$. Temperature coefficient:
$(0.05 \%+0.5 \mathrm{RU})^{\circ} \mathrm{C}$.

Range	Resolution	Uncertainty at 1 meas/ s (1)	
		90 days	1 year
60 mV	$10 \mu \mathrm{~V}$	$0.3 \%+100 \mu \mathrm{~V}$	$0.5 \%+100 \mu \mathrm{~V}$
600 mV	100 HV	$0.3 \%+1 \mathrm{mV}$	$0.5 \%+1 \mathrm{mV}$
6 V	1 mV	$0.3 \%+10 \mathrm{mV}$	$0.5 \%+10 \mathrm{mV}$
60 V	10 mV	$0.3 \%+100 \mathrm{mV}$	$0.5 \%+100 \mathrm{mV}$
100 V	100 mV	$0.3 \%+1 \mathrm{~V}$	$0.5 \%+1 \mathrm{~V}$

(1) The uncetainty is given in $\pm(\% \mathrm{rdg}+\mathrm{C})$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with rdg $=$ reading and $\mathrm{C}=$ Constant.

Input impedance:
$\leq 100 \mathrm{M} \Omega$ over ranges $\leq 6 \mathrm{~V}$.
$10 \mathrm{M} \Omega$ for upper ranges.

Note: The AN 5905 board is limited to 60 V range.

Resistance

Unavailable with the AN 5905 board.
Connection: 3-or 4-balanced wire.

Range	Resolution			Uncertainty at 7 meas/ 5 over 90 days (1)		Uncertainty at 7 meas/ s over 1 year (1)	
	7 meas/ s	$20 \mathrm{meas} / \mathrm{s}$	100 meas/s	AN 5885	AN 5900	AN 5885	AN 5900
60Ω	$1 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$	$30 \mathrm{~m} \Omega$	$0.01 \%+5 \mathrm{~m} \Omega$	$0.03 \%+6 \mathrm{~m} \Omega$	$0.02 \%+7 \mathrm{~m} \Omega$	$0.06 \%+7 \mathrm{~m} \Omega$
600Ω	$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$300 \mathrm{~m} \Omega$	$0.01 \%+5 \mathrm{~m} \Omega$	0.03\% + $6 \mathrm{~m} \Omega$	$0.02 \%+7 \mathrm{~m} \Omega$	$0.06 \%+7 \mathrm{~m} \Omega$
$3 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	3Ω	$0.01 \%+40 \mathrm{~m} \Omega$	$0.03 \%+40 \mathrm{~m} \Omega$	$0.02 \%+60 \mathrm{~m} \Omega$	$0.06 \%+60 \mathrm{~m} \Omega$
$30 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1Ω		$0.01 \%+400 \mathrm{~m} \Omega$	$0.03 \%+400 \mathrm{~m} \Omega$	$0.02 \%+600 \mathrm{~m} \Omega$	$0.06 \%+600 \mathrm{~m} \Omega$
$300 \mathrm{k} \Omega$	2Ω	10Ω		$0.01 \%+4 \Omega$	$0.03 \%+4 \Omega$	$0.02 \%+6 \Omega$	$0.06 \%+6 \Omega$

(1) Expressed in $\pm(\% \mathrm{rdg}+\mathrm{C})$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with rdg $=$ reading and $\mathrm{C}=$ Constant.

The uncertainties at 20 meas/ s are the same as for 7 meas/ s .
At 50 meas/ s , the uncertainty over one year is ranging 4 RU .
At 100 meas/ s , the uncertainty over one year is ranging 12 RU.

When measuring with 3 -wire configuration, add $100 \mathrm{~m} \Omega$ to the uncertainties above and, if required, the possible line unbalance.
M easurement current: 1 mA for ranges from 60Ω to $3 \mathrm{k} \Omega$ and $10 \mu \mathrm{~A}$ for $30 \mathrm{k} \Omega$
and $300 \mathrm{k} \Omega$ ranges.
Permissible line resistance: $\leq 100 \Omega$ per wire.
Repeatability between two channels:
3 -wire $\leq(100 \mathrm{~m} \Omega+3 \mathrm{RU})$
4 -wire $\leq(10 \mathrm{~m} \Omega+3 \mathrm{RU})$.

RTDs

Unavailable with the AN 5905 board.
Connection: 3- or 4-balanced wire.
RTDs linearization according to IEC Publication 751.

Range	Measurement range	Resolution			Uncertainty at 7 meas/s over 90 days (1)		Uncertainty at 7 meas/ s over 1 year (1)	
		7 meas/s	20 mea/s	$100 \mathrm{mea} / \mathrm{s}$	AN 5885	AN 5900	AN 5885	AN 5900
Pt 25	-220 to $+1200^{\circ} \mathrm{C}$				$0.01 \%+0.05^{\circ} \mathrm{C}$	$0.03 \%+0.05^{\circ} \mathrm{C}$	$0.02 \%+0.07^{\circ} \mathrm{C}$	$0.06 \%+0.07^{\circ} \mathrm{C}$
Pt 50	-220 to $+1200^{\circ} \mathrm{C}$				$0.01 \%+0.03^{\circ} \mathrm{C}$	$0.03 \%+0.03{ }^{\circ} \mathrm{C}$	$0.02 \%+0.04{ }^{\circ} \mathrm{C}$	$0.06 \%+0.04{ }^{\circ} \mathrm{C}$
Pt 100	-220 to $+1200^{\circ} \mathrm{C}$	$0,01{ }^{\circ} \mathrm{C}$	$0,1{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.01 \%+0.011^{\circ} \mathrm{C}$	$0.03 \%+0.01^{\circ} \mathrm{C}$	$0.02 \%+0.02{ }^{\circ} \mathrm{C}$	$0.06 \%+0.02{ }^{\circ} \mathrm{C}$
Pt 1000	. 220 to + $600^{\circ} \mathrm{C}$				$0.01 \%+0.01^{\circ} \mathrm{C}$	$0.03 \%+0.01^{\circ} \mathrm{C}$	$0.02 \%+0.02^{\circ} \mathrm{C}$	$0.06 \%+0.02^{\circ} \mathrm{C}$
Ni 100	60 to $+180^{\circ} \mathrm{C}$				$0.01 \%+0.01^{\circ} \mathrm{C}$	$0.03 \%+0.01^{\circ} \mathrm{C}$	$0.02 \%+0.01^{\circ} \mathrm{C}$	$0.06 \%+0.01^{\circ} \mathrm{C}$

Expressed in $\pm(\%$ rdg +C$)$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with rdg $=$ reading and $\mathrm{C}=$ Constant.

The uncertainties at 20 meas/ s are the same as for 7 meas/ s .
At 50 meas/ s , the uncertainty over one year is ranging 2 RU.
At 100 meas/ s , the uncertainty over one year is ranging 3 RU.

When measuring with 3 - wire configuration, add $0.25^{\circ} \mathrm{C}$ to the uncertainties above and the line unbalance value converted in ${ }^{\circ} \mathrm{C}$.
M ea surement current: 1 mA .
Permissible line resistance: $\leq 100 \Omega$ per
wire.
Temperature coefficient:
$\left(0.002 \%+0.0025^{\circ} \mathrm{C}\right){ }^{\circ} \mathrm{C}$.
Repeatability betw een two channels:
$\leq 0.05^{\circ} \mathrm{C}$ with 4 -wire configuration and $\leq 0.2^{\circ} \mathrm{C}$ with 3 -wire configuration.

Thermocouples

Three reference junction compensation modes are programmable: without RJC, with built-in RJC (1 Pt 100 per board), with remote RJC (1 Pt 100 per board).
Thermocouple linearization according to IEC Publication 584-1.

Sensor	Measurement range	Resolution			Uncertainty at 7 meas/ s over 90 days (1)		Uncertainty at 7 meas/ s over 1 year (1)	
		$7 \mathrm{~m} / \mathrm{s}$	$20 \mathrm{~m} / \mathrm{s}$	$100 \mathrm{~m} / \mathrm{s}$	AN 5885	AN 5900/ AN 5905	AN 5885	AN 5900/ AN 5905
K	$\begin{array}{r} -250 \text { to }-2000^{\circ} \mathrm{C} \\ -200 \text { to }-100^{\circ} \mathrm{C} \\ -100 \text { to }+13700^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1.0^{\circ} \mathrm{C} \\ & 0.008 \%+0.4^{\circ} \mathrm{C} \\ & 0.008 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1{ }^{\circ} \mathrm{C} \\ & 0.03 \%+0.5^{\circ} \mathrm{C} \\ & 0.03 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+1.5^{\circ} \mathrm{C} \\ & 0.01 \%+0.6^{\circ} \mathrm{C} \\ & 0.01 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+1.5^{\circ} \mathrm{C} \\ & 0.06 \%+0.7^{\circ} \mathrm{C} \\ & 0.06 \%+0.3^{\circ} \mathrm{C} \end{aligned}$
T	$\begin{aligned} & -250 \text { to }-200^{\circ} \mathrm{C} \\ & -200 \text { to }-100^{\circ} \mathrm{C} \\ & -100 \text { to }+400^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1 \quad{ }^{\circ} \mathrm{C} \\ & 0.008 \%+0.4^{\circ} \mathrm{C} \\ & 0.008 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1{ }^{\circ} \mathrm{C} \\ & 0.03 \%+0.5^{\circ} \mathrm{C} \\ & 0.03 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+1.5^{\circ} \mathrm{C} \\ & 0.01 \%+0.5^{\circ} \mathrm{C} \\ & 0.01 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+2{ }^{\circ} \mathrm{C} \\ & 0.06 \%+0.6^{\circ} \mathrm{C} \\ & 0.06 \%+0.3^{\circ} \mathrm{C} \end{aligned}$
J	$\begin{array}{r} -210 \text { to }-120^{\circ} \mathrm{C} \\ -120 \text { to }+1100^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+0.3^{\circ} \mathrm{C} \\ & 0.008 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+0.4^{\circ} \mathrm{C} \\ & 0.03 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+0.4^{\circ} \mathrm{C} \\ & 0.01 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+0.5^{\circ} \mathrm{C} \\ & 0.06 \%+0.3^{\circ} \mathrm{C} \end{aligned}$
5	$\begin{array}{r} -50 \text { to }+550^{\circ} \mathrm{C} \\ +550 \text { to }+1768^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 1^{\circ} \mathrm{C} \\ 0.5^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 1^{\circ} \mathrm{C} \\ 0.5^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1.5^{\circ} \mathrm{C} \\ & 0.008 \%+0.6^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1.5^{\circ} \mathrm{C} \\ & 0.03 \%+1{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+2{ }^{\circ} \mathrm{C} \\ & 0.01 \%+0.8^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+2{ }^{\circ} \mathrm{C} \\ & 0.06 \%+1 \end{aligned}$
B	$\begin{array}{r} -400 \text { to }+900^{\circ} \mathrm{C} \\ +900 \text { to }+1820^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 1^{\circ} \mathrm{C} \\ 0.5^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 0.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1.5^{\circ} \mathrm{C} \\ & 0.008 \%+1{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1.5^{\circ} \mathrm{C} \\ & 0.03 \%+1{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+2{ }^{\circ} \mathrm{C} \\ & 0.01 \%+1 \end{aligned}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.06 \%+2{ }^{\circ} \mathrm{C} \\ & 0.06 \%+1 \end{aligned}$
N	$\begin{array}{r} -250 \text { to }-2000^{\circ} \mathrm{C} \\ -200 \text { to }-100^{\circ} \mathrm{C} \\ -100 \text { to } 0^{\circ} \mathrm{C} \\ 0 \text { to }+1300^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1{ }^{\circ} \mathrm{C} \\ & 0.5^{\circ} \mathrm{C} \\ & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1.5^{\circ} \mathrm{C} \\ & 0.008 \%+0.6^{\circ} \mathrm{C} \\ & 0.008 \%+0.3^{\circ} \mathrm{C} \\ & 0.008 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1.5^{\circ} \mathrm{C} \\ & 0.03 \%+0.7^{\circ} \mathrm{C} \\ & 0.03 \%+0.3^{\circ} \mathrm{C} \\ & 0.03 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+2{ }^{\circ} \mathrm{C} \\ & 0.01 \%+0.8^{\circ} \mathrm{C} \\ & 0.01 \%+0.4^{\circ} \mathrm{C} \\ & 0.01 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+2.5^{\circ} \mathrm{C} \\ & 0.06 \%+1 \\ & 0.06 \%+0 .{ }^{\circ} \mathrm{C} \\ & 0.06 \%+0.3^{\circ} \mathrm{C} \end{aligned}$
E	- 250 to $+1000^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.008 \%+0.8{ }^{\circ} \mathrm{C}$	$0.03 \%+1{ }^{\circ} \mathrm{C}$	$0.01 \%+1{ }^{\circ} \mathrm{C}$	$0.06 \%+1.5^{\circ} \mathrm{C}$
C	-20 to $+2320^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.008 \%+0.4{ }^{\circ} \mathrm{C}$	$0.03 \%+0.4{ }^{\circ} \mathrm{C}$	$0.01 \%+0.6^{\circ} \mathrm{C}$	$0.06 \%+0.6^{\circ} \mathrm{C}$
Mo	0 to $+1375^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.008 \%+0.2^{\circ} \mathrm{C}$	$0.03 \%+0.2{ }^{\circ} \mathrm{C}$	$0.01 \%+0.2^{\circ} \mathrm{C}$	$0.06 \%+0.2{ }^{\circ} \mathrm{C}$
R	$\begin{aligned} & -50 \text { to }+550^{\circ} \mathrm{C} \\ & -550 \text { to }+1768^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 0,5^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 1^{\circ} \mathrm{C} \\ 0,5^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+1.5^{\circ} \mathrm{C} \\ & 0.008 \%+0.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+1.5^{\circ} \mathrm{C} \\ & 0.03 \%++0.0^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+2{ }^{\circ} \mathrm{C} \\ & 0.01 \%+0.7^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+2{ }^{\circ} \mathrm{C} \\ & 0.06 \%+0.8^{\circ} \mathrm{C} \end{aligned}$
L	-200 to $+900^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.008 \%+0.2{ }^{\circ} \mathrm{C}$	$0.03 \%+0.3{ }^{\circ} \mathrm{C}$	$0.01 \%+0.3^{\circ} \mathrm{C}$	$0.06 \%+0.4^{\circ} \mathrm{C}$
U	$\begin{aligned} & -200 \text { to }-100^{\circ} \mathrm{C} \\ & -100 \text { to }+600^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.2^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.008 \%+0.3^{\circ} \mathrm{C} \\ & 0.008 \%+0.2^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \%+0.4^{\circ} \mathrm{C} \\ & 0.03 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \%+0.4^{\circ} \mathrm{C} \\ & 0.01 \%+0.3^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \%+0.5^{\circ} \mathrm{C} \\ & 0.06 \%+0.3^{\circ} \mathrm{C} \end{aligned}$
PI	- 100 to $+1400^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.008 \%+0.3{ }^{\circ} \mathrm{C}$	$0.03 \%+0.3{ }^{\circ} \mathrm{C}$	$0.01 \%+0.4{ }^{\circ} \mathrm{C}$	$0.06 \%+0.4^{\circ} \mathrm{C}$

Expressed in $\pm(\% \mathrm{rdg}+\mathrm{C})$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with rdg $=$ reading and $\mathrm{C}=$ Constant.

The uncertainties above are given for an RJC at $0^{\circ} \mathrm{C}$.
Using the built-in RJC, add to the uncertainties above:
$0.2{ }^{\circ} \mathrm{C}$ for the AN 5885 board
$0.5^{\circ} \mathrm{C}$ for the AN 5900 board $0.3^{\circ} \mathrm{C}$ for the AN 5905 board.

Repeatability between two channels:

- over a same board: 1 RU,
- betw een two different boards: 1 RU plus the RJC error.
Input resistance $\leq 100 \mathrm{M} \Omega$.
Permissible line resistance: $1 \mathrm{k} \Omega$ per wire.
ducers, maximum voltage drop permissible in one gauge: 3.2 V .

Permissible unbalanced voltages compatible with the 30 mV and 300 mV ranges of the system voltmeter.
Measurement rate: 7 meas/s, 20 meas/s or 50 meas/s.
N ote: The system can measure in full bridge configuration with externally supplied power, in this case, the gauge power board is not necessary.

M ea surement by strain gauges or other resistive transducers.
This board operates only with the AN 5885, 10 input channels.

Sensor pow er.
A specific power board common to all "gauge" channels occupies one standard slot in the system.
Available voltage: 2 V or 10 V switched to each bridge measured.
M easurement current: 1 mA or 8 mA switched to each half- or quarter- bridge measured.

Voltage and current are selected by switches located on the gauge power board.
Three compensation gauges can be connected to three quarter- bridge configurations.
Measured signals applied to the standard inputs of the analogue input boards as follows:
one channel per quarter-bridge,
two consecutive channels per half- or full bridge. Free channels can still be used for other purposes.
Sensors: minimum 120Ω gauges or trans-

Configuration	Range	Supply	Measurement range (2)	Resolution at 7 meas/ $\mathrm{s}(2)$	Uncertainty at 7 meas/s (1)	
					90 days	1 year
Full bridge	$\begin{aligned} & 30 \mathrm{mV} \\ & 30 \mathrm{mV} \end{aligned}$	$\begin{array}{r} 10 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	$\begin{aligned} & \pm 6000 \\ & \pm 30000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 1 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.05 \%+0.4 \mu \varepsilon \\ & 0.05 \%+10 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.08 \%+0.6 \mu \varepsilon \\ & 0.08 \%+12 \quad \mu \varepsilon \end{aligned}$
	$\begin{aligned} & 300 \mathrm{mV} \\ & 300 \mathrm{mV} \end{aligned}$	$\begin{array}{r} 10 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	$\begin{aligned} & \pm 60000 \\ & \pm 300000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 1 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.04 \%+0.6 \mu \varepsilon \\ & 0.04 \%+15 \mu \varepsilon \end{aligned}$	$\begin{array}{lll} 0.06 \%+1 & \mu \varepsilon \\ 0.06 \%+20 & \mu \varepsilon \end{array}$
Half-bridge	$\begin{aligned} & 30 \mathrm{mV} \\ & 30 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{~mA} \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 6000 \\ & \pm 40000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 1 \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.05 \%+2.4 \mu \varepsilon \\ & 0.05 \%+20 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.08 \%+3.6 \mu \varepsilon \\ & 0.08 \%+27 \quad \mu \varepsilon \end{aligned}$
	$\begin{aligned} & 300 \mathrm{mV} \\ & 300 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{~mA} \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 60000 \\ & \pm 400000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 2 \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.04 \%+2.6 \mu \varepsilon \\ & 0.04 \%+25 \mu \varepsilon \end{aligned}$	$\begin{array}{ll} 0.06 \%+4 & \mu \varepsilon \\ 0.06 \%+40 & \mu \varepsilon \end{array}$
Quarter-bridge	$\begin{aligned} & 30 \mathrm{mV} \\ & 30 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{~mA} \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 6000 \\ & \pm 40000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 1 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.05 \%+2.6 \mu \varepsilon \\ & 0.05 \%+27 \quad \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.08 \%+4 \mu \varepsilon \\ & 0.08 \%+37 \mu \varepsilon \end{aligned}$
	$\begin{aligned} & 300 \mathrm{mV} \\ & 300 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{~mA} \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 60000 \\ & \pm 400000 \end{aligned}$	$\begin{aligned} & 0,2 \mu \varepsilon \\ & 2 \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.04 \%+2.8 \mu \varepsilon \\ & 0.04 \%+32 \mu \varepsilon \end{aligned}$	$\begin{aligned} & 0.06 \%+4.4 \mu \varepsilon \\ & 0.06 \%+50 \quad \mu \varepsilon \end{aligned}$

(1) Expressed in $\pm\left(\%\right.$ rdg $+n$ units) at $23 \pm 5^{\circ} \mathrm{C}$.
(2) Measurement range and resolution are given for 350Ω gauges and a gauge factor $N G F=2$.

Configuration: full bridge, half- bridge, and quarter- bridge.
Temperature coefficient for full bridge measurements:
$(0.005 \%+0.5 \mathrm{RU}) /{ }^{\circ} \mathrm{C}$ from 0 to $35^{\circ} \mathrm{C}$. ($0.005 \%+1 \mathrm{RU}$) from 35 to $50^{\circ} \mathrm{C}$

Temperature coefficient for half- or quarterbridge measurements:
$(0.005 \%+0.5 \mathrm{RU}+2 \mu \varepsilon) /{ }^{\circ} \mathrm{C}$ from 0 to $35^{\circ} \mathrm{C}$.
($0.005 \%+1 \mathrm{RU}+2 \mu \varepsilon$) ${ }^{\circ} \mathrm{C}$ from 35 to $50^{\circ} \mathrm{C}$.

Repeata bility between channels

$<3 \mathrm{RU}+5 \mathrm{mV}$.

0 ther specifications: Those of the 30 mV and 300 mV ranges of the system.
digital input board AN 5886 .

This board counts pulses or measures frequencies of ten periodic signals. Each channel is coil-nsulated from other channels of the data acquisition system.

Input voltage for any channel:
Level 1: $\mathrm{CH} 1>+2.9 \mathrm{~V}$.
Level 0: $\mathrm{CHO}<+1 \mathrm{~V}$.
Maximum usable voltage: ± 50 VDC or AC peak.
Input current for level 1: 1.6 mA typical.
Input insulation: 100 VDC or AC RMS
max. between each channel.

Counter inputs
Count positive transitions on the inputs. User selectable bounce filtering time: $500 \mu \mathrm{~s}$ and 1 ms (typical) by a switch located on the digital input board. The filter on channels 1 and 2 can be eliminated to permit high-speed counting.

A jumper on the digital input board allows the use of channel input 10 as a trigger to validate or inhibit other counter inputs on the same board.

Channel numbers	1.2	1 to 10	
Filter in use	None	$500 \mu \mathrm{~s}$	1 ms
Maximum counter frequency	100 kHz	180 Hz	50 Hz
Minimum pulse duration	$5 \mu \mathrm{~s}$	2 ms	2 ms
Minimum duration between pulses	$5 \mu \mathrm{~s}$	2 ms	2 ms

Frequency inputs

\qquad

Uncertainty: $0.02 \%+2$ RU.
Temperature coefficient: $0.0004 \% /{ }^{\circ} \mathrm{C}$.
$N B$: No filter is provided on frequency inputs. A cyclic ratio of approx. 50% (square signal) is advisable to obtain stable measurements but the pulse duration should always be above $5 \mu \mathrm{~s}$.

Range	Resolution	Measurement range		
			min. F	max .F
		Integration time		
		1 second	0.2 second	
100 Hz	0.001 Hz	1 Hz	5 Hz	99.999 Hz
1000 Hz	0.01 Hz	1 Hz	5 Hz	999.99 Hz
10 kHz	0.1 Hz	0.01 kHz	0.05 kHz	9.9999 kHz
100 kHz	1 Hz	0.1 kHz	0.5 kHz	99.999 kHz

electrotechnical input boards AN 6001 - AN 6002

They offer the following features:

- M easurements $U, I, P, E, \cos \varphi, H z$ in single or three-phase
- Continuous and triggered modes
- High scanning rate up to 16 kHz .

Two electrotechnical boards are available, with different inputs and functions.

For the connection of voltage and current transformers, use the AN 6001 board: - 3 voltage inputs 100 VAC

- 3 voltage inputs 100 mVAC .

For the connection of Hall effect probes, (for example LEM type), use the AN 6002 board:

- 6 voltage inputs 4 VAC.

The AN 6001 board is supplied with 3 shunts in order to convert the 1 A or 5 A transformer output into 100 mV , and to allow current measurement on 3 channels.

These boards measure voltages and currents on a single-phase or a three-phase network with or without neutral. The different programmed parameters are then computed.
Inputs are not insulated. The range selection can be programmed.
Both cards can function:

- in continuous mode.
- in triggered mode.
- in high scanning rate.

Board	Input	Continuous and triggered modes (3) signals from 10 to 440 Hz			
Reference	Un	Measurement range	Input impedance	Pemanent overload	Crest factor
AN 6001	$\begin{array}{r} 100 \mathrm{VAC} \\ 100 \mathrm{~m} \mathrm{VAC}(1) \end{array}$	$\begin{aligned} & 1 \text { to } 125 \mathrm{VAC}(2) \\ & 0 \text { to } 125 \mathrm{~m} \text { VAC } \end{aligned}$	$\begin{array}{r} 250 \mathrm{k} \Omega \\ 2.5 \mathrm{k} \Omega \end{array}$	$\begin{array}{r} 200 \mathrm{~V} \\ 15 \mathrm{~V} \end{array}$	1.8
AN 6002	4 VAC (1)	0 to 4 VAC (2)	$100 \mathrm{k} \Omega$	100 V	1.5

(1) The current input is pefformed by connection with a shunt placed on the measured element.
(2) On the voltage input 1 the minimum signal amplitude must be 10% of the rated voltage.
(3) The signals must cross 0 only once by period.

Continuous mode

In this mode, the board measures continuously, computes and retains for the system the last measurements processed.

Uncertainties

Uncertainties are expressed in
$\pm\left(\%\right.$ rdg $+\%$ of scale) at $23 \pm 5^{\circ} \mathrm{C}$.
They are valid for measurements between
5% and 100% of the full scale

- Voltages and currents:
0.1% rdg $+0.2 \% \mathrm{~s}$.
- Powers and Energies:
0.2% rdg $+0.3 \%$ if $0.8<P F \leq 1$
$0.4 \% \mathrm{rdg}+0.3 \%$ s if $0.5<\mathrm{PF}<8$
1% rdg $+0.3 \%$ s if $0.2<$ PF <0.5.
PF is the power factor.
- Frequency; 0.1% rdg.

Triggered mode

The acquisition is triggered:

- from the keypad,
- from an internal or external trigger.

The acquisition stops:

- from the keypad,
- when the signal disappears on the trigger board input,
- when the storage memory is full.

Storage memory

\qquad
RAM not saved, capacity: 30000 data. This memory can be transferred into the bulk memory of the data acquisition system.

Uncertainties

Uncertainties are expressed in
\pm (\% rdg $+\%$ of scale) at $23 \pm 5^{\circ} \mathrm{C}$.
These uncertainties are valid for measurements betw een 5% and 100% of the full scale.

- Voltages and currents:
0.2% rdg $+0.2 \% s$
- Powers and Energies:
$0.4 \% \mathrm{rdg}+0.3 \%$ if $0.8<\mathrm{PF}<1$
$0.6 \% \mathrm{rdg}+0.3 \% \mathrm{~s}$ if $0.5<$ PF $<0.8 \mathrm{~s}$
1.2% rdg $+0.3 \% \mathrm{~s}$ if $0.2<\mathrm{PF}<0.5 \mathrm{~s}$
- Frequency: 0.1% rdg.

High scanning rate

This mode allows the simultaneous acquisition of 1 to 6 channels per board, with choice by programming between the following frequencies: $100 \mathrm{~Hz}, 200 \mathrm{~Hz}$, $500 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$ and 16 kHz .
The data are stored in the board memory (30 000 data).
The LS25 software (DO S) delivered with the board allows the system configuration as well as the stored data transfer to a PC. The file can be displayed as a graphic and exported to any usual spreadsheets.

Measurements and programmable parameters

- 3 RMS voltages phases/ neutral (V1,

V2, V3)

- 3 RM 5 voltages between phases (U12, U13, U23).
- 2 RM S currents (11, 12, 13).
-1 active power per phase + total active power (P1, P2, P3, P).
-1 reactive power per phase + total reactive power ($\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3, \mathrm{Q}$).
- 1 apparent power per phase + apparent global power (S1, S2, S3, S).
- 1 power factor per phase + the total power factor (PF1, PF2, PF3, PF).
-1 active energy per phase + total active energy (EP1, EP2, EP3, EP).
- 1 reactive energy per phase + total reactive energy ($\mathrm{EQ} 1, \mathrm{EQ} 2, \mathrm{EQ} 3, \mathrm{EQ}$). - 1 apparent energy per phase + total apparent energy (ES1, ES2, ES3, ES) - 1 frequency (F).

Average acquisition rate

Netw ork frequency	10 Hz	50 Hz	400 Hz
Single phase configuration 2 measurements 10 parameters	$5 \mathrm{meas} / \mathrm{s} 25 \mathrm{meas} / \mathrm{s} 39 \mathrm{meas} / \mathrm{s}$		
Three phase configuration + neutral 6 measurements 10 parameters	5 meas/s 14 meas/s 14 meas/s		
Three phase configuration + neutral 6 measurements 10 parameters	5 meas/s	8 meas/s	8 mea

high speed acquisition input bo ard ATC006

The ATCOO6 board is a high speed acquisition module for DATA LO G 20, 90 and 140 systems. It takes two slots of input-output board.
This module is composed of an a nalogue board allowing a multiplexed acquisition of 1 to 10 measurements inputs at a programmable time between $10 \mu \mathrm{~s}$ and 10 s and by a logic board ensuring communication and storage. Two storage versions are available: 200000 and 1000000 data.

Communication interface

\qquad
The configuration and the processing of module can be performed via 3 interfaces:

- IEEE488 (N ational Instruments G PIB PC2 or PC2A compatible)
- system serial interface MODBUS-JBUS
- front keypad (optional).

Acquisition specifications

\qquad
15 bit converter + sign.
Each input can be programmed as $\pm 1 \mathrm{~V}$ (0.1 mV resolution) or $\pm 10 \mathrm{~V}$ (1 mV resolution).
Permissible common mode voltage between channels: 30 V .
Acquisition time (time interval between two successive acquisitions) is programmable from $10 \mu \mathrm{~s}$ to 10 s .
The module storage memory is saved (> 1 month) and managed for memorising 32 bursts of data maximum (i.e. 32 different trigger actions). Two capacities are a vailable: 200000 and 1000000 data.

Trigger inputs

Two "O N / O FF" inputs are included in the board. O ne is a trigger function input with a trigger uncertainty of $2 \mu \mathrm{~s}$. The second one can be linked with programmable thresholds on the 3 first channels by boolean equation in order to define event conditions.

LACQR softw are

Delivered in standard with the ATCOO6 board.
This softw are is running under W indows and allows following functions:

- Communication with one or more modules via IEEE488 interface or via COM 1 to COM 4 port
- Creation or modification of configuration files
- Run and stop of data burst acquisition
- M easurement reading and data file creation
- Real time possible storage on PC
(40 000 data/s maximum via IEEE488 interface)
- Result file processing in text mode and graphic
- Delayed computation on channels
- .TXT file creation, to be treated in spreadsheets.

Acquisition configuration
This dialog box allows to define acquisition parameters

- Channel to be first acquired
- Acquisition time
- Trigger (T1, T2 and T3 associated to the first three channels to be acquired)
- Definition of event following the 3 intemal triggers and external input
- Number of cycles to be executed after event
- Number of cycles to memorise.

Channel configuration
This dialog box allows to define for each channel:

- Unit
- Range 1 or 10 V
- Scaling $a x+b$
- High and low limits

File processing as graphic.

Calculation channels
This dialog box allows to define all mathematical operations on or between channels (in the result file).

The board is made up of 5 digital/ analogue converters (12 bits) each providing two output quantities, a voltage - 10 to +10 V and a current $0-20 \mathrm{~mA}$ or 4 20 mA .
As voltage and current quantities come from the same converter, they cannot be used simultaneously.
Voltage and current channels of the same board are coil-insulated and also are insulated from other system input/ outputs.

Voltage output

M inimum permissible load resistance:
$5 \mathrm{k} \Omega$.

Current output

- Internal power:

M aximum permissible load resistance:
500Ω.
0 pen circuit voltage: 12 V .

Range	Resolution	Uncertainty
$\pm 10 \mathrm{~V}$	5 mV	$\pm 10 \mathrm{mV}$
0.20 mA	0.01 mA	$\pm 0.02 \mathrm{~mA}$
4.20 mA	0.01 mA	$\pm 0.02 \mathrm{~mA}$

- External power:

Supply voltage: $15 \mathrm{~V} \leq \mathrm{V}$ supply $\leq 50 \mathrm{~V}$.
Max. permissible load resistance Rmax $=$ (V supply -2)/ 0.02.
Max. permissible common mode voltage
between analogue channels and other sys-
tem I/ 0 channels: 150 VDC or VAC peak.
A verage processing time: 20 ms .
Signal risetime to resistance load: $20 \mu \mathrm{~s} / \mathrm{V}$.

M aximum load capacity: 10μ F.
Temperature coefficient: 0.01% per ${ }^{\circ} \mathrm{C}$.
dry relay output board AN 5887
Capacity: 10 bistable relays per board. W ired to removable screw terminal connector.

Contact resistance load: 48 V or 1 A or 30 W.

communication interface

The DATALO G are equipped in standard with two communication interfaces, each configurable in RS 232 by means of a DB9 female connector or RS 485 using a 5 -pin screw terminal block. Data format: 8 bits, 1 stop bit, no parity.

Addresses are programmable from 1 to 15 and transmission rates from 9600 to 56000 bauds.

P1 interface \qquad
M 0 DBUS RTU protocol either as master

- remote controlled from one of the communication interfaces;
- on a conditional processing.

internal printer

Option only available with DATALO G 90 and 140.
Thermal printer, 24 characters per line.

Number of operations: 5.10^{5} in the following conditions.
Each contact is either common, on or off.
The relays are controlled according to system program, for example: - on a specific alarm limit action;

Printing speed: 1.5 line per second.
Paper roll: 80 mm wide, 50 m long, and diameter 65 mm .

PCMCIA interface

The DATALO G with keypad version, are equipped with a PCM CIA interface, type 2. This interface enables the operator to read and write on memory cards of RAM

STATIC technology and FLASH card of ATA type. These cards allow to save and load configuration files as well as to create result files.

general specifications

Operating conditions

Reference range: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
0 perating nominal range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, 20% to 80% RH non-condensing.

Pow er requirements

100 to $230 \mathrm{VAC} \pm 10 \%, 50 \mathrm{~Hz}$ to 60 Hz .
Consumption: 40 VA.
Input available for 11 V to 28 VDC sup. ply.

0 ptional battery pack with built-in charger. Life: 3 hours approximately. Unregulated output available for sensor supply. Rated voltage 24 V , current 100 mA .

Presentation

The systems are delivered with a carrying handle to be removed for panel mounting with optional accessories. A protective cover located at back of the system
enables the operator to measure voltages above 60 V in accordance with the EMC and low voltage directives.
The systems can be delivered with various options (refer to the table).

Weight

From 3 kg to 9 kg depending on models and options.

software

Various utilities for W indows from 3.1 to $N T$ are available.

Logidat

Used to configure the DATA LO G and process the values stored in memory from compatible PC. Easy to use thanks to menu-guided operation.
Processing the result files offers possible delayed computations, graphic form, sort and export to spreadsheets.
Connection to the systems can be performed by modems.

LOGIDAT programming screen
The menu-guided operation enables the operator to select his/ her sensor type, program the conversion algorithms, the alarm thresholds together with their action on the output relays.

LTCM P

This utility is intended to read, at time intervals programmed by the operator, one or more systems connected to the PC or with automatic call of the different stations by Modem.

Visulog

\qquad Supervisory softw are for DATA LO G which authorises the real time measurement representation in the form of graphic animations, curves, bargraphs and numerical tables, the recording of values and highest alarms in a logbook. Result files can be created on the PC hard disk and
processed without stopping the acquisi-
tion.
A remote monitoring function is available for calling the duty operators and signalling the alarms on M initel.

Utilities.

In order to simplify all specific developments, a wide range of utilities is available:
Visulog DDE links with W indows environment.
DLl library, 16 and 32 bits. Labview driver.

LOGIDAT file structure
Various data sort and collation functions are available such as: opening sub-files to extract data from certain channels, adding markers or recording only channels in alarm conditions, etc... These files can be directly converted to industry standard formats for export into common spreadsheet and database such as: Lotus 123, Excel, D-Base, etc...

LOGIDAT graphic display screen
The operator has access to graphic representation in the form of curves. Various functions are available as follows: Programming of 2 different Y-axis
Choice of X-axis: time or correlation between channels.
Possibility to add comments and titles.
Zoom and marker functions.
Automatic statistics computation with LOGIDAT.

ordering instructions

System 2 // 0 without keypad and display	D2AO
System 2 I/ 0 with keypad and display	D2C0
System 2 I/ 0 with keypad, display and Centronics interface (1) (2)	D2CC
System 9 I/ 0 without keypad and display	D9A0
System 9 // 0 without keypad and display but with rechargeable battery	D9AB
System 9 // 0 with keypad and display (1)	D9C0
System 9 // 0 with keypad, display and rechargeable battery (1)	D9CB
System 9 // 0 with keypad, display and internal printer (1)	D9C
System 9 I/ 0 with keypad, display and Centronics interface (1) (2)	D9CC
System 9// 0 with keypad, rechargeable battery and Centronics (1) (2)	D9BC
System 14 // 0 without keypad and display	D14A0
System 14 // 0 without keypad and display but with rechargeable battery	D14AB
System 14 // 0 with keypad and display (1)	D14C0
System 14 I/ 0 with keypad, display and rechargeable battery (1)	D14CB
System 14 // 0 with keypad, display and internal printer (1)	D14Cl
System 14 // 0 with keypad, display and Centronics interface (1) (2)	D14CC
System 14 I/ 0 with keypad, rechargeable battery and Centronics (1) (2)	B

10.channel analogue inputboard AN 5885

10 -channel simplified analogue input board AN 5900
10 -channel protected analogue input board ATC 017
20-channel analogue input board, 2-wire AN 5905
Strain gauge board
AN 3700
10 -channel digital input board
AN 5886
10 -channel high speed acquisition input board, 200000 data ATC $006-01$
10 -channel high speed acquisition input board, 1000000 data ATC 006-02
Electrotechnical board, version $1(100 \mathrm{~V}$ and 100 mVAC$)$ AN 6001
Electrotechnical board, version 2 (4 VAC)
AN 6002
Electrotechnical board, special version AN 6003
10 -channel relay output board AN 5887
5-channel analogue output board AN 5888

Accessories

Removable terminal block for I/ 0 boards, 10 channels ER 48276-000
Removable terminal block for $1 / 0$ boards, 20 channels ER 48402.000
PCMCIA flash card, 2 Mb
ATC 013
PCMCIA flash card, 5 Mb
ATC 014
PCM CIA flash card, 10 Mb
ATC 015
Shunt for process current measurement
ER 44007.024
Set of 10 paper rolls for DATA LO G
ATC 030
IEEE board
IEEE mechanical adapter for ATC 006
ATC 019
ATC 020
meter and CPU or DATALO G
ATC 031
Supply for DATALO G
ATC 032
Protection cover for DATALO G 20
ATC 023
Protection cover for DATALO G 90
ATC 024
Protection cover for DATALO G 140
ATC 025
Rack kit for DATALO G 20
ATC 026
Rack kit for DATALO G 90
ATC 027
Rack kit for DATALO G 140
ATC 028
12 -thermocouple cone for autoclave
ATC 033
12-platinum probe cone for autoclave
ATC 034
Specific cone for autoclave
ATC 035

Softw are

Software protection key
ATC 007
DOS software for graphic tendency and remote monitoring
LS 23
Configuration software under W indows
LO GIDAT
Real time software, 16 bits under W indows
Real time software, 32 bits under W indows
Multistation call software under W indows LTCM P
Updating DOS to W indows real time
MAJDLW
Updating LS 20 to W indows MAJLTC20
Processing licence LW 1
LCEW 1
Updating LW 1
MAJLW 1
DLL library, 16 and 32 bits
LTC 001
Labview driver
LTC 003
(1) All the models with display are equipped in standard with a PCMCIA interface.
(2) The optional Centronics interface occupies 2 slots.

